Iris Segmentation: State of the Art and Innovative Methods
نویسندگان
چکیده
Iris recognition is nowadays considered as one of the most accurate biometric recognition techniques. However, the overall performances of such systems can be reduced in non-ideal conditions, such as unconstrained, on-the-move, or noncollaborative setups. In particular, a critical step of the recognition process is the segmentation of the iris pattern in the input face/eye image. This process has to deal with the fact that the iris region of the eye is a relatively small area, wet and constantly in motion due to involuntary eye movements. Moreover, eyelids, eyelashes and reflections are occlusions of the iris pattern that can cause errors in the segmentation process. As a result, an incorrect segmentation can produce erroneous biometric recognitions and seriously reduce the final accuracy of the system. This chapter reviews current state-of-the-art iris segmentation methods in different applicative scenarios. Boundary estimation methods will be discussed, along with methods designed to remove reflections and occlusions, such as eyelids and eyelashes. In the last section, the results of the main described methods applied to public image datasets are reviewed and commented.
منابع مشابه
A New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملComparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملEvaluation of the Parameters Involved in the Iris Recognition System
Biometric recognition is an automatic identification method which is based on unique features or characteristics possessed by human beings and Iris recognition has proved itself as one of the most reliable biometric methods available owing to the accuracy provided by its unique epigenetic patterns. The main steps in any iris recognition system are image acquisition, iris segmentation, iris norm...
متن کاملRobust Iris Recognition in Unconstrained Environments
A biometric system provides automatic identification of an individual based on a unique feature or characteristic possessed by him/her. Iris recognition (IR) is known to be the most reliable and accurate biometric identification system. The iris recognition system (IRS) consists of an automatic segmentation mechanism which is based on the Hough transform (HT). This paper presents a robust IRS i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012